X-covers

Covers of Acts over Monoids

Alex Bailey (joint work with Jim Renshaw)

University of Southampton

Wed 18th Jan, 2012

Preliminaries

- Acts
- Classes of acts

Known results on covers

- Coessential covers
- Flat covers of modules

\mathcal{X} -covers

- X-precovers
- SF/CP-covers

Preliminaries ●ooo	Known results on covers	X-covers	Open problems
Acts			
Acts			

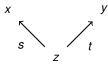
Given a monoid S, a (right) S-act is a set A equipped with an action

$$egin{array}{lll} A imes S o A\ (a,s)\mapsto as, \end{array}$$

such that (as)t = a(st) and a1 = a.

An *S*-act *A* is **cyclic** if it can be written in the form A = aS for some $a \in A$.

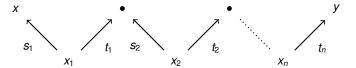
An *S*-act *A* is **locally cyclic** if given any $x, y \in A$ there exits $z \in A$, $s, t \in S$ such that x = zs, y = zt (equivalently, every finitely generated subact is contained in a cyclic subact).



A monoid S satisfies **Condition** (A) if every locally cyclic S-act is cyclic, e.g. every finite monoid satisfies Condition (A).

An *S*-act *A* is **decomposable** if it can be written as the coproduct of two subacts, $A = B \amalg C$, and **indecomposable** otherwise.

Given an indecomposable *S*-act *A*, for all $x, y \in A$, there exists $x_1, \ldots, x_n \in A$, $s_1, \ldots, s_n, t_1, \ldots, t_n \in S$ such that $x = x_1s_1, x_1t_1 = x_2s_2, \ldots, x_nt_n = y$.

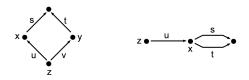


Theorem

Every S-act uniquely decomposes as a coproduct of indecomposable S-acts.

Preliminaries ○○●○	Known results on covers	\mathcal{X} -covers	Open problems
Classes of acts			
Flatness prop	perties of acts		

- An S-act X is **projective** if Hom(X, -) preserves epimorphisms.
- An *S*-act *X* is **flat** if $X \otimes -$ preserves monomorphisms.
- An S-act X is strongly flat if X ⊗ − preserves pullbacks and equalizers, or equivalently if X satisfies Conditions (P) and (E).
- An S-act satisfies Condition (P) if xs = yt for x, y ∈ X, s, t ∈ S, then there exists z ∈ X, u, v ∈ S such that x = zu, y = zv and us = vt.
- An S-act satisfies Condition (E) if xs = xt for x ∈ X, s, t ∈ S, then there exists z ∈ X, u ∈ S such that x = zu and us = ut.



Preliminaries ○○○●	Known results on covers	<i>X</i> -covers	Open problems
Classes of acts			
Overview			

Given a monoid S, let \mathcal{P} , \mathcal{SF} , \mathcal{CP} and \mathcal{F} be the classes of projective, strongly flat, Condition (P) and flat S-acts respectively.

Theorem

The following inclusions are valid and strict:

 $\mathcal{P}\subset\mathcal{SF}\subset\mathcal{CP}\subset\mathcal{F}.$

Theorem

Let \mathcal{X} be any of the following classes: $\mathcal{P}, S\mathcal{F}, C\mathcal{P}$ or \mathcal{F} , then $\coprod_{i \in I} X_i \in \mathcal{X}$ if and only if $X_i \in X$ for each $i \in I$.

Theorem

Let \mathcal{X} be any of the following classes: SF, CP or F, then \mathcal{X} is closed under direct limits.

Prel	im	in	ari	es

Preliminaries

- Acts
- Classes of acts

Known results on covers

- Coessential covers
- Flat covers of modules

- *X*-precovers
- *SF*/*C*P-covers

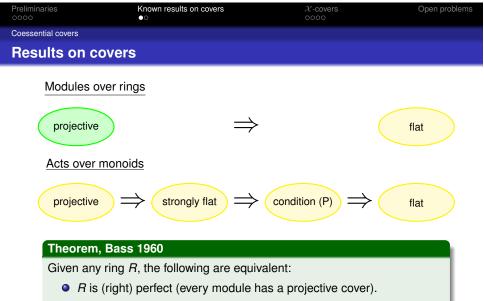
Open problems

Let S be a monoid and \mathcal{X} a class of S-acts closed under isomorphisms.

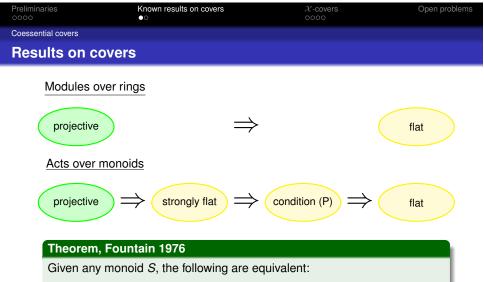
- Given *S*-acts *C* and *A*, an epimorphism $\phi : C \to A$ is called coessential if given any proper subact $B \subseteq C$, $\phi|_B$ is not an epimorphism. If $C \in \mathcal{X}$, we call $\phi : C \to A$ an \mathcal{X} coessential cover of *A*.
- An homomorphism φ : C → A with C ∈ X is called an X-precover of A if every homomorphism ψ : X → A with X ∈ X can be factored through φ,

and we call it an \mathcal{X} -cover of A whenever $\psi = \phi$ forces ϵ to be an isomorphism.

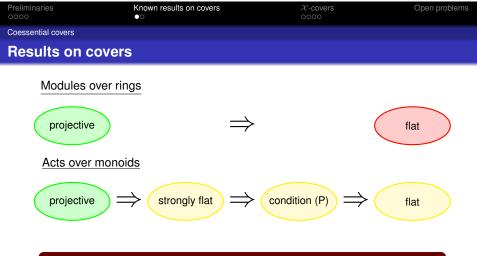
When $\mathcal{X} = \mathcal{P}$, the class of projective acts, then these are equivalent.



- *R* satisfies DCC on principal (left) ideals.
- Every flat module is projective.



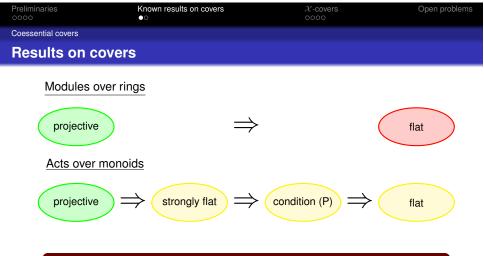
- *S* is (right) perfect (every *S*-act has a projective cover).
- S satisfies DCC on principal (left) ideals and Condition (A).
- Every strongly flat act is projective.



Question

When do modules have flat coessential covers?

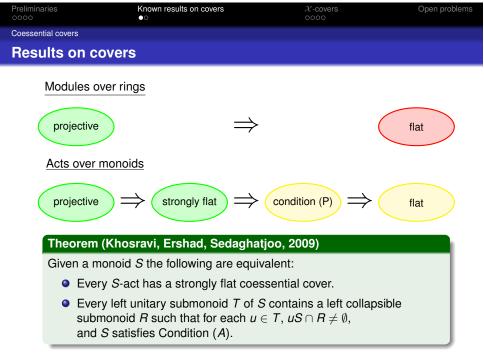
'On generalized perfect rings' (Amini, Amini, Ershad, Sharif, 2007)

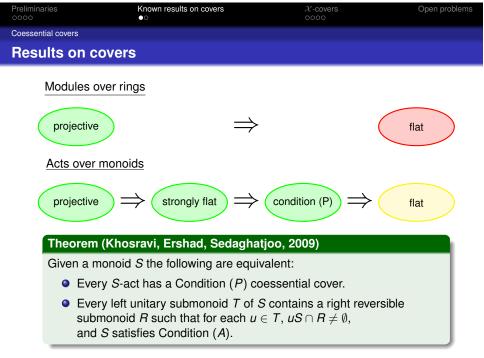


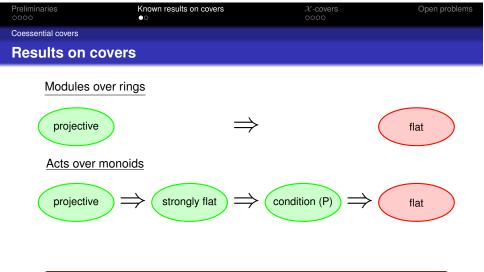
Question

When do modules have flat coessential covers?

'On generalized perfect rings' (Amini, Amini, Ershad, Sharif, 2007) $\mathbb{Z}/n\mathbb{Z}$ does not have a flat coessential cover as a \mathbb{Z} -module.







Question

When do acts have flat coessential covers?

Preliminaries	Known results on covers ○●	\mathcal{X} -covers	Open problems
Flat covers of modules			
Flat covers of act	ts		

In 1981 Enochs introduced the idea of an \mathcal{X} -cover.

- He showed that if a module has an \mathcal{F} -precover then it has an \mathcal{F} -cover. (Any class closed under direct limts.)
- He also conjectured that every module has an \mathcal{F} -cover. This came to be known as the flat cover conjecture.
- In 1995 J. Xu proved that *F*-covers always exist for certain types of commutative Noetherian rings.
- The conjecture was finally proved independently by Enochs and Bican & El Bashir and published in a joint paper in 2001.

Preliminaries

- Acts
- Classes of acts

Known results on covers

- Coessential covers
- Flat covers of modules
- 3 X-covers
 - X-precovers
 - *SF/CP*-covers

Open problems

Preliminaries	Known results on covers	<i>X</i> -covers ●○○○	Open problems
$\mathcal X$ -precovers			
\mathcal{X} -precovers			

Theorem (B & R, 2011)

Let S be a monoid, and \mathcal{X} a class of S-acts closed under direct limits. If an S-act A has an \mathcal{X} -precover, then A has an \mathcal{X} -cover.

Since strongly flat, Condition (P), and flat acts are all closed under direct limits...

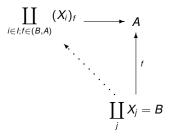
Corollary

If A has an SF/CP/F-precover then it has an SF/CP/F-cover.

Theorem (Bridge, 2010 (Teply, 1976))

Let \mathcal{X} be a class of S-acts such that $\coprod_{i \in I} X_i \in \mathcal{X} \Leftrightarrow X_i \in \mathcal{X}$ for each $i \in I$. Let S be a monoid that has only a set of indecomposable S-acts with property \mathcal{X} , then every S-act has an \mathcal{X} -precover.

Let $\{X_i : i \in I\}$ be a set of indecomposable *S*-acts with property \mathcal{X} , and let each $(X_i)_f \cong X_i$. Then we have the following \mathcal{X} -precover.



Preliminaries	Known results on covers	X-covers ○○●○	Open problems
$\mathcal{SF}/\mathcal{CP} ext{-covers}$			
Results			

Theorem (B & R, 2011)

Let S be a monoid that satisfies Condition (A), then every S-act has an SF/CP-cover.

Proof.

- Every Condition (P) act is a coproduct of locally cyclic acts
- Ondition (A) ⇔ locally cyclic acts are cyclic
- The cardinality of a cyclic act is bounded $|S/\rho| \le |S|$
- The class of all indecomposable Condition (P) acts is a set

Corollary

If every S-act has an SF/CP coessential cover then it has an SF/CP-cover.

Preliminaries	Known results on covers	<i>X</i> -covers ○○○●	Open problems
$\mathcal{SF}/\mathcal{CP} ext{-covers}$			
Results			

Example (B & R, 2011)

There exist monoids that have a proper class (not a set) of indecomposable strongly flat acts, for example the full transformation monoid of an infinite set.

Prelimi	nar	ies

 \mathcal{X} -covers

Preliminaries

- Acts
- Classes of acts

2

Known results on covers

- Coessential covers
- Flat covers of modules

Х-с

- X-precovers
- *SF*/*CP*-covers

Preliminaries	Known results on covers	ℋ-covers ○○○○	Open problems

Open problems

Question

Does every S-act have an SF-cover?

Question

If an S-act has an \mathcal{X} coessential cover, does it have an \mathcal{X} -cover?

Question

What about other classes of acts, e.g. injective? (Enochs showed that every module has an injective cover if and only if the ring is Noetherian.)

Question

What about a dual theory for envelopes?